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Scalar Memory References in Pipelined
Multiprocessors: A Performance Study

Ravi Ganesan and Shlomo Weiss, Member, IEEE

Abstract—Interleaved memories are essential in pipelined com-
puters to attain high memory bandwidth. As a memory bank is
accessed, a reservation is placed on the bank for the duration
of the memory cycle, which is often considerably longer than the
processor cycle time. This additional parameter, namely, the bank
reservation time or the bank busy time, adds to the complexity of
the memory model. For Markov models, exact solutions are not
feasible even without this additional parameter due to the very
large state space of the Markov chain. In this paper we develop
a Markov model which explicitly tracks the bank reservation
time. Because we only model one processor and the requested
bank, the transition probabilities are not known and have to be
approximated. The performance predicted by the model is in close
agreement with simulation results.

Index Terms— Pipelined computers, supercomputers, inter-
leaved memory, Markov chains, memory conflicts.

I. INTRODUCTION

NTERLEAVED memories are commonly used in pipelined

processors to increase the memory bandwidth beyond the
bandwidth of a single memory module (or bank). The perfor-
mance of interleaved memory systems depends on the number
of banks, the bank cycle time, the number of processors,
and the pattern of requests generated. The design of such
systems involves a number of trade-offs which are dominated
by the nature of the interrelationships between these factors.
Performance analysis of interleaved memory systems yields
insights into these interrelationships, thus enabling the designer
to study cost/performance trade-offs and determine system
parameters.

A large amount of useful work has been done in this
area, and we briefly survey the various approaches and their
implications. Of special interest is Bailey’s work [1] on
memory contention in vector computers. While in [1] the
focus is on vector memory references, Bailey also introduced a
Markov model, which is the starting point of our research. Our
primary thrust is to develop a more accurate Markov model
by relaxing the restrictive condition that at most one processor
can be blocked on a busy bank.

Stochastic models are commonly used to study the per-
formance of parallel memories. A basic assumption in these
models is that memory references are randomly distributed.
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This is clearly not the case in vector processing, where each
reference is at a constant distance from the previous reference.
Hence the model developed in this paper is not intended
for vector processors. One reasonable area of application for
the model is a transaction processing environment, which is
characterized by a large number of independent transactions
executing concurrently. The model developed in this paper
can be also applied to pseudorandomly interleaved memories
[2]-[8]- In a pseudorandomly interleaved memory the address
sequence presented to the memory system is a pseudorandom
sequence which is generated by “scrambling” the address
pattern produced by the processor. Randomizing memory
schemes have been implemented in the IBM RP3 [3] and
Cydrome Cydra 5 [7] memory systems.

The remainder of this paper is organized as follows. In
Section II we look at prior work on memory performance
modeling. We point out that assumptions commonly made in
many multiprocessor memory analyses are not applicable in
the context of pipelined computers. We summarize Bailey’s
model in Section II. Comparing it with simulation results
(Section 1V), we conclude that Bailey’s model often overes-
timates performance, primarily because of the restriction that
at most one processor can be blocked on a busy bank. We
develop a Markov model in Sections V and VI and present
results predicted by it in Section VIIL Finally, in Section IX
we discuss the accuracy of our model.

II. SURVEY OF MEMORY PERFORMANCE MODELING
TECHNIQUES

The contention problem in memory systems is a well-
known problem that has received considerable attention in
the literature. Cheung and Smith [9] analyze the memory
system of the CRAY X-MP by considering the various ways
in which memory references interact with other references
from the same vector stream or from other vector streams.
This deterministic approach, taken also by Oed and Lange
[10], is most appropriate for the memory system of a vector
multiprocessor, since vector references are clearly not random.
Cheung and Smith point out, however, that when several
vector streams are active simultaneously, and each may have
a different stride, the number of different stride combinations
is too large to analyze each case separately.

The more common approach to analyze contention in par-
allel memories is the use of probabilistic models. In an early
work, Hellerman [11] proposed a model in which he assumes
that in each cycle a sequence of b requests is presented to a
parallel memory system with b banks. In this model, Hellerman
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assumes that memory requests are independent and randomly
distributed. If multiple requests arrive at the same bank, one
is serviced and the others are rejected. Rejected requests are
dropped and b new independent requests are submitted in
the next cycle to randomly selected banks. The stream of b
requests is inspected in the arrival order in one cycle. Requests
arriving prior to a conflict are forwarded to memory within the
same cycle. The rest of the b requests are rejected.

Based on this model, Hellerman derived a formula for the
average number of busy banks and showed that 4%-*¢ is an
approximation of this formula to within 4%, for b < 45. Knuth
and Rao [12] showed that Hellerman’s expression is a well-
studied function with known asymptotic behavior. Ravi [13]
changed Hellerman’s model to allow all requests that arrive
to distinct banks, within the same cycle, to be forwarded to
memory. That is, in a stream of m requests arriving in a given
cycle (where m < b, the number of banks), a conflict does not
block other requests that are directed to different banks. Ravi
showed that removing this constraint in Hellerman’s model
significantly enhances the predicted memory bandwidth.

Ravi’s memory model with m processors and b banks is
equivalent to a combinatorial problem with m balls and b
partitions, in which m balls are randomly distributed among
the b partitions in each cycle. Also, in each cycle, one ball is
removed from each partition, which corresponds to forwarding
a request to a memory bank. In Ravi’s model, unserviced
requests are simply dropped at the end of the cycle. Chang,
et al. [14] point out that this assumption makes Ravi’s model
somewhat optimistic, because unserviced requests can cause
additional conflicts in later cycles.

A memory model similar to Ravi’s was analyzed by Bhan-
darkar [15] using Markov chain techniques. The state of this
Markov chain is defined by a b-tuple (k. ko,---, kp), where
b is the number of banks, and k;, 1 < 7 < b is the number
of memory requests issued to bank ¢ in a given cycle. With
m processors, 0 < k; < m and Z?::l k; = m. Even for
modest size systems (i.e., b = 16 and m = 16), this Markov
chain leads to a very large number of states. By making the
assumption that the processors are identical, Bhandarkar was
able to obtain and solve a system with fewer states.

Following are the assumptions in Ravi’s and Bhandarkar’s
model:

A) The processors are statistically identical.

B) The memory requests are independent and randomly
distributed in the range 1...b.

C) Each of the m processors generates one memory ref-
erence per cycle with probability 1; that is, m requests
are submitted to the memory system in every cycle.

D) There are not conflicts in the processor—memory inter-
connect (i.e., a crossbar switch).

E) The memory cycle time is constant.

F) A processor blocks while its request is being serviced.
This assumption implies that either the processor is
bound by the speed of the memory, or the processor
cycle time is equal to the memory cycle time.

G) Rejected requests are dropped and a new set of inde-

pendent requests is submitted in the next cycle.

While assumption F may be realistic in SIMD parallel
processors (e.g., the Burroughs Scientific Processor—BSP)
or in some MIMD machines, it is clearly incorrect in the
context of pipelined supercomputers (e.g., CRAY computers).
A common characteristic of pipelined processors is the short
clock period, which leads to efficient pipeline operation. The
memory system cannot match the speed of the processor, and
one memory cycle corresponds to multiple processor cycles.
Furthermore, a processor does not block while its request is
being serviced by a memory bank; rather, one processor can
have multiple requests simultaneously in service.

Assumption G is also problematic. If a processor is waiting
for a bank whose remaining reservation is 10 cycles, for
example, then in the next 10 cycles that processor will gain
access to memory with probability 0. The processor has a
much higher chance to succeed in accessing memory if it is
permitted to select a bank, at random, in each of the following
10 cycles. Clearly, this assumption leads to a model that
overestimates memory bandwidth, particularly in pipelined
vector multiprocessors (e.g., the CRAY-2), where the memory
is characterized by long bank busy times.

Both assumptions F and G are common in most of the
multiprocessor memory analyses reported in the literature
[16]—[26]. Notable exceptions are [27], [28], and [1]. Mudge
and Al-Sadoun [27] make assumption G, but not F. Their
Markov chain model is primarily targeted to applications
where the connection times between processors and memories
is variable (e.g., variable size data blocks transferred over a
bus).

Queueing models represent an alternative approach to the
models discussed above. Bucher and Calahan [29] derived a
scaling relation, which indicates that memory access delays
depend quadratically on the bank reservation time for light
memory load. For heavy load, delays scale linearly with the ra-
tio of processors to the number of memory banks. Bucher and
Calahan also developed an open and closed queueing model
of memory conflicts, and validated the model by simulation.
A heuristic extension of the open model provides results chose
to simulation for scalar and long vector references.

III. BAILEY'S MODEL

In a recent paper [1], Bailey introduced a simple Markov
chain model for memory bank contention in vector computers.
The important characteristic of this model, and the reason for
choosing it as the starting point of our analysis, is that it does
not make assumption F. That is, the memory cycle time is
an integer multiple of the processor cycle time, and, if the
requested bank is free, the processor does not block while
its request is being serviced. We briefly summarize Bailey’s
model below.

The system consists of m processors and a shared inter-
leaved memory with b banks. The bank cycle time is c. In
any cycle, a processor may make a request with probability r
(request rate). To keep track of the state of a bank, a reservation
of ¢ cycles is placed on a bank when it is accessed. In each
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Fig. 1. Bailey’s model normally overestimates the memory acceptance ratio. The acceptance ration (AR) is the ratio of accepted
requests to total requests.

subsequent cycle the remaining reservation on the bank is
decremented by one until it reaches 0, at which time the bank
becomes free.

Assuming that processors are statistically identical, it is
sufficient to model a single processor. A processor is in state 0
(the free state) if it is not blocked. Otherwise, the processor
is in state ¢, where 1 < 7 < ¢, in which case the processor
is blocked on a bank that has ¢ cycles remaining to process a
previous request. In each cycle, a blocked processor performs
a transition with probability 1 from state ¢ to state < — 1 until
the requested bank becomes free.

Let x be the probability that a bank is busy. Then rx is
the probability that a free processor makes a request to a
busy bank. Assuming that the reservation on a busy bank
is uniformly distributed in the range 1...c, the transition
probability from state 0 to state ¢ is given by

re
Poi = —

1<z2<e.

Based on this approximation, Bailey solved the Markov
chain in terms of z. He obtained a second equation from
the following consideration. The mp, free processors request
rmpg banks. In the steady state the number of requested banks
equals the number of banks that are freed in that cycle, which
is bx/c. Hence

bx
rmpy = e 1)

Substituting the value of = from this equation, Bailey solved
the Markov chain in terms of the system parameters m, r, c,
and b.

IV. ANALYSIS OF BAILEY’'S MODEL

In this section we compare figures obtained using Bailey’s
model with simulation results, and comment on the accuracy
of the model. The following two basic assumptions in Bailey’s
model have a significant impact on its accuracy:

Assumption 1

At most one processor may be blocked on a busy bank.

Assumption 2

The remaining reservation on a busy bank is uniformly
distributed in the range 1...c.

Assumption 1 considerably simplifies the Markov chain and
limits the number of states to c. As this assumption ignores
memory conflicts caused by multiple processors contending
for the same bank, we expect Bailey’s model to overestimate
the memory performance. This effect is indeed confirmed by
simulation (see Fig. 1), and becomes especially prominent as
the number of processors is increased.

Assumption 2 allows the approximation of transition proba-
bilities. There are, however, situations in which this as-
sumption does not hold, as demonstrated by the following
pathological case with m = 1, b =1, ¢ = 4, and r = 1.0
(i.e., one processor, one bank, and the processor makes a
request on every cycle it is not blocked). On the first cycle
the processor will make a request that is accepted, and on the
next the processor’s request will hit the bank when it has 3
cycles left. This leaves the processor blocked. The processor
will get unblocked after three cycles when its initial request is
complete and its second request is accepted. Since the request
rate 7 is 1.0, the processor will immediately make a request
which will hit the bank when it has 3 cycles left. From then on
every request the processor makes will go to the bank when
it has 3 cycles left.

Hence the transition probabilities are pg1 = po2 = 0, and
po,3 = 1. Interestingly enough, po 4 is also 0, since the only
way the processor may request a bank with four reservations
remaining is that another processor has requested, and obtained
access to, the same bank in the same cycle. This is not possible
in the above example, however, since m = 1.

Modeling a single processor drastically reduces the size
of the Markov state space, but results in loss of informa-
tion, which manifests itself in the inability to determine
exact transition probabilities. Hence the need to approximate
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transition probabilities, which leads to inaccuracies in the
model, as indicated above. Markov chains that explicitly model
each memory bank permit the calculation of exact transition
probabilities. However, as noted earlier, such chains suffer
from an explosion in the size of their state space.

V. MARKOV CHAIN MODEL

We have seen in the previous section that Bailey’s model
tends to overestimate the memory performance, because of
the assumption that at most one processor can be blocked on
a busy bank. This may be also regarded as a model in which
a queue is attached to each bank to hold incoming requests,
but the size of the queue is restricted to one request. Even in
this relatively simple model the transition probabilities are not
known and have to be approximated.

Attaching unbounded! queues to each bank greatly com-
plicates attempts to obtain reasonable approximations for the
transition probabilities. Further, the state space of the chain
also grows. Hence our approach was to incrementally increase
the size of the queue (i.e., allow for a queue size of 2,
3, ... ), approximate the transition probabilities, and solve
the corresponding Markov chain until the performance results
predicted by the Markov model were within a few percentage
points of the simulation figures. A somewhat surprising result
was that at the queue size of 2, our model was predicting
accurate figures for a large range of system parameter values.
Hence we restrict our attention to the case where the maximum
length of the queue attached to a bank is 2.

The model must be able to keep track of two quantities:
(a) the number of reservation cycles remaining on the re-
quested bank if it is busy, and (b) the number of pending
requests in the queue of a busy bank. We define a Markov
chain as follows. Let the random variable X, be 0 if the
processor is free, of ¢ if the processor is blocked on a busy
bank that is reserved for 7 additional cycles. Let the random
variable Y; be O if the requested bank is free, or j if the
bank is busy and there are j processors blocked on this bank.
The processor currently serviced by the bank is not blocked
and therefore is not included in the count of the j blocked
processors. Then {X;,Y;,¢ > 1} is a Markov chain with the
transition probabilities:

Pz’j,kl = PI‘Ob[XH,] = k,Y,g_H = l|Xt = i,Yt = ]]

As before, we assume that there are m processors, b banks,
and when a bank accepts a request it becomes reserved (busy)
for ¢ cycles. In each cycle a processor issues a request
with probability r, and z is the probability that a bank is
busy. Hence the probability that a free processor makes a
request to a busy bank is rz. We make the following two
assumptions regarding the status of the busy bank requested
by the processor.

'If we assume that a processor blocks until its request is accepted for
service, than the maximum number of requests in a bank’s queue will be
bounded by m, the number of processors.

1. There are no processors blocked on the busy bank (again,
the processor whose request is being processed by the
busy bank is not blocked).

2. The remaining reservation on the busy bank is uniformly
distributed in the range, 1...c.

These assumptions are needed to approximate the transition
probabilities from the free state (00) to a blocked state (¢1).
Using the notation,

a= — 2)
we get:

Pooi1 = 1<i<e

When the system is in a blocked state (:1), 1 < 7 < ¢,
a new request from a different processor may arrive at the
same bank. To determine the probability of such a request
arriving, we need to know the number of free processors. This
number depends on Fyg, the probability that a processor is
free. Therefore the transition probabilities from states (1),
1 <1 < ¢, depend on the probability that the system is in state
(00). But in a Markov chain the history of the process does
not go beyond the last state. Hence the need to make a third
approximating assumption. We assume that approximately half
of the processors (m/2) are free to generate requests, and
therefore the request rate in the entire system is mr/2. Since
these requests are uniformly distributed across b banks, the
probability of a new request arriving at the bank is

ﬂ:mr

— 3
2b ®

and the transition probabilities are approximately given by

Pil,(Z—l)Z = /87

The Markov chain is shown in Fig. 2. The remaining transi-
tion probabilities are derived as follows. When the system is in
state (12), the bank is reserved for one more cycle, and is about
to become free in the next cycle. With two requests pending
in the queue, the request accepted by the bank is chosen at
random. If the accepted request belongs to the processor being
modeled, the transition is to state (00), indicating that the
processor became free. Otherwise, the transition is to state
(c1), indicating that the processor is now waiting for a bank
that has just accepted a request and is reserved for ¢ more
cycles. Hence

2<i<e.

1
Py o0 = 3

1
Pyl = 5 -

If the system is in state (11) just one cycle before the bank
becomes free and a new request arrives (with probability £),
there are again two requests, and one is accepted at random. If
the new incoming request is accepted (with probability 1/2),
the transition is to state (cl), since a reservation of ¢ cycles
has just been placed on the bank. Therefore,

Py = R
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Fig. 2. Markov model. An accepted request places a reservation of ¢ cycles on the bank, and the reservation is decremented by
one in each subsequent cycle. Up to two requests may be blocked on the bank.

Otherwise, the processor becomes free and the transition
probability is
g

Prigo=1- o

VI. DERIVATION OF STATE PROBABILITIES

The balance equations for the Markov chain are given by:

1
Pooz(l—ac)P00+(1— §>P11+ 5P12

Py = aPoo + (1 = B)Pis1)1, 1<i<c-1
1

Py = aPoo + §P11+ 5—P12

Py = BPg11)1 + Flt1)2s 1<i<e—2

Pr_1y2 = BPa.

The state probabilities can be obtained in terms of Poo:

i—1
P = aPy K 1<i<e
( - j=1 (1 - /6)]
where
c—1 1
f— (Zj:l (—1—_13)7) +c+1
ZIT[;F -B+1
and

=1 1 1—1 (7]_])
P = aPo | K — kS —— + e
T ﬂ;(l—ﬁ)] ﬂ;(l—m]

1<1<c¢c-1
where
o—afems(i- 2]
Define:
c i—1
S= T -1 _1
= la- ﬂ) a- ﬂ)
i=c—1 i-1 G- )
+ - Bk PR
i=zl z ﬂ)J j=1 (1 - ﬂ)]

@

Since the state probabilities sum to one, we obtain:

i=c—1

P00+ZP11+ Z Py =1.

But since,
1=c—1
ZPﬂ + Z Piy = aPyoS
we get:
1
Pop= ——. 5
W= g )

Equation (1) can be rewritten in the context of the Markov
chain as:
bz
rmP, 00 = —
c

which combined with (2) yields:
mr2P00
b
Substituting this expression of « into (5), we obtain:

V1+4mr2S/b —1 ©)

2mr2S/b

o=

Py =

where S is given in (4).

VII. PERFORMANCE MEASURES

Several measures have been used in the literature to quantify
the performance of the memory system. The most common one
is the effective bandwidth (BW), defined to be the expected
number of requests accepted by the memory in one cycle (see
[26], for example). Bailey [1] introduced a different measure,
called memory efficiency, which is similar to Cheung and
Smith’s acceptance ratio (AR) [9]. Let A be the number
of accepted requests in a period of k cycles, and R be the
number of rejected requests in the same time interval. A
request rejected by the memory on the first attempt will be
resubmitted in each subsequent cycle until accepted. The AR
is the ratio of accepted requests to total number of requests:

A
= 7
AR iiR 0]

Pyo is the probability that a processor is free, and r the
probability that a free processor makes a memory request. Ink
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Fig. 3. Acceptance ratio and bandwidth for m = 1, b = 16, ¢ = 4, and variable request rate 7.

cycles, a processor issues 7 Pook requests. Of these, j requests
are rejected. Assume that a rejected request is resubmitted an
average of 7 times until accepted. Hence 7 attempts lead to
(m — 1)j rejected requests and j accepted requests. We have:
A =requests accepted on the first attempt
+ the last (and successful) attempt of requests
submitted multiple times
= [rPook — j] + j
= TPgok'
R =the first atempt of rejected requests
+ subsequent attempts, with the exception of the

last one
=j+(m—1)j
=mj.
We get:
AR = Pk
rPyok + )

In a time interval of & cycles, the processor is blocked for
(1 — Pgo)k cycles. mj is the number of resubmissions, but
since in a blocked state the processor resubmits a pending
request on every cycle, this is also the total cycles in which
the processor is blocked. Hence 7j = (1 — Pyo)k, and we
obtain:

_ 7 Poo
7Poo + (1 — Pog)

The bandwidth is the total accepted requests for the m
Processors:

AR 3)

BW = m’I‘P()(). (9)

To compare these two measures, namely, BW and AR,
consider a system with m = 1, b = 16, and ¢ = 4. We chose
these parameters as an example to correspond to the CRAY-1
memory system. Fig. 3 shows the AR and BW predicted by
our model as a function of r, the probability that a processor
makes a request on a given cycle (request rate). A higher
request rate corresponds to a higher load on the memory

system, and, as we would expect, a higher load leads to more
conflicts and lower performance. This is clearly indicated by
the acceptance ratio, which changes from 0.94 to 0.69 as 7 is
varied in the range of 0.10 to 1.00. In the same range, however,
the bandwidth increases from 0.10 to 0.69 accepted requests
per cycle, because the extra bank conflicts are masked by the
higher request rate. In the remainder of this paper we use the
acceptance ratio to measure the memory performance.
Another performance measure that arises naturally in queue-
ing models is the delay D. This is the measure used by Bucher
and Calahan [29]. The delay D can be related to Pyo by the
following observation. In k cycles, a processor is free for Pook
cycles and issues 7 Pook requests. Each request is delayed by
D cycles. Hence the total delay is 7 PookD, during which the
processor is busy waiting for requests to be serviced. Hence:

Pyg = (free cycles)/(free cycles + busy cycles)
= Pook/(Pgok‘ + TP()()]CD)
=1/(1+4rD).

VIII. PERORMANCE RESULTS

The memory performance predicted by the Markov model,
as measured by the acceptance ratio, can be calculated by
substituting the value Pyo from (6) into (8). Figs. 4-6 show
performance results for the Markov model. In Fig. 4 we
illustrate the relationship between the AR and the number
of banks for a different number of processors. We fixed the
request rate and bank cycle time to r 0.8 and ¢ = 16,
respectively. As the graph shows for a given processor size,
there is an increase in the AR until a point where further
increase does not yield increases in the same proportion. For
a given m, ¢, and 7, choosing a value of b at the knee of
the graph would provide a good cost—benefit ratio. This is,
however, not true when the number of processors is high,
since then the relationship appears to be fairly linear in the
range shown, without an observable knee.

Fig. 5 illustrates the variations in AR caused by changes in
the number of processors m. Again, we present the data for
the case where 7 = 0.8 and ¢ = 16. This graph contains infor-
mation similar to Fig. 4, although from a different perspective.
It is instructive to note that even for a relatively small number
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Fig. 4. Memory performance (acceptance ratio) versus number of banks.
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Fig. 5. Memory performance (acceptance ratio) versus number of processors.

changes in the bank cycle time c. Here, r = 0.8 and m = 16.
The sharp drop shown in the acceptance ratio for increases in
the bank cycle time are at the crux of a growing practical
problem. Since the clock speeds of processors have been
falling at sharper rates than the speeds of memories (especially
high capacity—low cost dynamic memories), there is a steady
increase in the bank cycle times. The increased efficiency of
processors will not transfer into a corresponding improvement
in system performance if memory becomes the bottleneck.

Acceptance Ratio (AR)

IX. DISCUSSION AND CONCLUSIONS

Most of the memory performance models studied in the
literature assume that: (a) the memory cycle time is identical
to the processor cycle time, or (b) the memory cycle time may
be longer than the processor cycle time, and then a processor
whose request has been accepted blocks for the duration of
the memory cycle. Neither of these two assumptions hold in
of processors (e.g., 4), the number of banks required to obtain  pipelined computers. In a pipelined machine, the operation
a reasonable acceptance ratio (e.g., 0.8) is very high. of the memory itself is pipelined and a processor is free to

In Fig. 6 we consider the relationship between the AR and perform computations or submit other memory requests while

0 10 20 30 40
Bank Cycle Time (c)

Fig. 6. Memory performance (acceptance ratio) versus bank cycle time.
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Fig. 7. Comparison with Bailey’s model.

one or more of its previous requests are still in the “memory
pipeline.” Hence a processor does not block for the duration
of the memory cycle if its request has been accepted. A
reservation, though, is placed on the requested bank for the
length of the memory cycle. A processor can have multiple
requests simultaneously pending in the memory system as long
as different banks are involved.

To capture this behavior a performance model has to keep
track of the status of each memory bank (free or busy: if
busy, the length of the remaining reservation). Even without
this additional information, Markov memory models with a
practical number of banks have a very large state space
and direct solutions are not feasible. Bailey’s approach to
this problem is to assume that all processors are statistically
identical and to model a single processor and the requested
memory bank if the bank is reserved by a previous request.
The model explicitly keeps track of the remaining reservation
on the busy bank.

To approximate the transition probabilities, which are un-
fortunately unknown in this model, Bailey made a number
of simplifying assumptions. These include the restriction that
at most one processor may be blocked on a busy bank. By
ignoring contention between processors for the same bank,
Bailey’s model overestimates memory performance unless the
memory system is lightly loaded.

The primary objective of this research was to improve
Bailey’s model by allowing multiple requests to be blocked
on the same memory bank. The resulting Markov chain still
has a reasonably small state space, but again, the transition
probabilities are not known. Faced with the task of approxi-
mating transition probabilities, we proceeded in a step-wise
fashion, by first allowing at most two processors to be blocked
on a busy bank (this corresponds to a queue length of two).
Even with this restriction, the model is close to the simulation,
as shown in Fig. 7. This conclusion, namely, that a queue
length of two is sufficient in most circumstances, is in close
agreement with Bucher and Calahan’s work [29]. They point
out that, for the range of b, m, and ¢ common in today’s
computers, the average queue lengths are always quite short.

In summary, the Markov model developed in this paper ap-
proximates the behavior of interleaved memories by modeling
one processor and the requested memory bank. The model
explicitly maintains the remaining length of the reservation
placed on a busy bank. Inaccuracies are introduced in the
model by the restriction that at most two processors may
be blocked on the same bank, and by the approximation of
transition probabilities. For large m, the absolute difference
in the acceptance ratio between the model and simulation is
within 3%. This deviation increases for m < 4; the largest
difference that we have observed being 10% for m = 1. Since
the model is intended for multiprocessors, we feel that this is
a reasonable limitation.
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