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Boyd (3] proposed a simple useful extension of RSA for digital multi-signatures. In the extension, the RSA private
exponent is split into multiple portions, which can then be used by multiple parties to create a joint signature.

In this work we begin by analyzing the security of the system (Boyd does not perform such an analysis) and
proving some interesting properties. Next, importantly for practical applications, we show that many security
properties are retained even when the private exponents are relatively short (unlike in ordinary RSA). Finally we
show how the system can be used to establish secure channels, and give evidence of security.

An important practical application, is when a central server maintains a share of every user’s private key (such
that the user does not know that share), and users sign messages jointly with the server. A digital signature
infrastructure which has such a central server provides for a convenient, non by-passable, audit point, and per-
mits instant key-revocation. If desired, it is possible to make the user’s portion of the private key short (say 64
bits), which is very useful in an era when smart cards (and smart card readers) are not ubiquitous on comput-
ing/telecommunications equipment.
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1 Introduction

1.1 Overview

A joint signature system is one in which two (or more) parties must collaborate in order to compute the digital
signature — no single party can compute such a signature independently. Several such schemes have been proposed,
and the scheme we focus on was originally developed by Boyd[3] and subsequently re-invented by us. The system
works by splitting, in a particular manner, the RSA private exponent into multiple parts, with each part entrusted
to a different entity. To sign a message, each entity, in turn, performs the regular RSA operation of modular
exponentiation. Upon completion, the resulting signature is indistinguishable from one created with the original
exponent which was split.

Our primary focus is on the case when the RSA private exponent is split into two portions, though we conjecture
that several of our results generalize to the multiple entity case. Unless otherwise stated, from now we refer
specifically to the two entity case.

This paper makes three contributions:

e We prove that the system has strong security properties which guarantee that cracking it is equivalent to
cracking RSA.

e Next we prove that several of these security properties are retained even when one of the two portions is
relatively short (e.g. 64 bits instead of 512 bits).

o Finally, we describe, and prove security properties of a key exchange protocol, based on the previous building
blocks.

A practical application of our system, addresses the case when one of the two entities is a central server, with
which a user (the other entity) must interact in order to compute a signature. The presence of such a server
has several important practical benefits including provision for short user keys, a central point for auditing, and
instant key revocation, and last, but not least, it provides a method of digital signature, with short secret keys,
that users can memorize. This last property is valuable currently, since smart cards and smart card readers are
not yet ubiquitously available on communications and computation equipment.

1.2 Other possible solutions to the short key problem

One alternative solution to the problem of long private keys is to store the private key on a server, encrypted
with a conventional cryptosystem, such as DES. Upon request, the server gives the user the encrypted private
key, which the user decrypts using the DES key, which is typically implemented in the form of a password known
only to the user. Qur scheme compares favorably to this method from a security perspective, since in our scheme
an eavesdropper will not be able to mount off-line password guessing attack.

Why not just let the regular RSA private key be short? Wiener’s result[10] implies that this would require that
very long public keys are used (1.5 times the modulus length). Further, in such a system joint signatures are just
two independent signatures, and verification is thus two independent verifications (at least one of which must be
with the very long public key). In contrast, in our solution a user has a short secret key, and verification of the
joint signature is equivalent to one ordinary RSA verification (and we do not need to trust the server).




1.3 Other related work

In [5] Desmedt and Frankel proposed a (t,n) threshold signature scheme where any ¢ out of n pre-designated
parties can jointly sign for the whole set of n parties. The system we describe is similar (but not identical) to
one of the DF schemes, with (¢, n) = (2,2). However, unlike our system, the DF system needs a clearinghouse, to
combine the partial results, and unlike the DF system, the system we describe can be used to establish a secure
channel.

In (8] Micali proposes a public key system, such that the shares of each user’s secret key are given to n escrow
authorities, every ¢ of which can jointly reconstruct the whole secret key (upon warrant). Revealing the user’s
private key in this fashion is dis-advantageous in that the same private key cannot be used as the basis for a
digital signature system. Further, it is no longer possible to provide eavesdropping on selective session, since the
authority has the power to eavesdrop on all subsequent sessions. In contrast, if our secure channel protocol is
used with a central security server and two users, i; and iz, then the security server can mediate a key agreement
between ¢, and i3, after which j, the server, knows the session key. Under warrant j will divulge such (i1, ;)
session key to the authorities, without exposing user’s permanent secret keys (which are not known to the server).
So, our scheme allows more penetration (of a trusted authority) into session keys, but less invasion into permanent
secret keys. We believe that in some contexts this balance makes sense.

Bellovin and Merritt [1] create a secure i — j channel, starting from a short secret password, known to both ¢ and
J, hence, unlike in our system, j must be fully trusted. Also, they do not create signatures.

1.4 Outline of the paper

In section 2 we describe the signature protocol, and in section 3 we show how the same mechanisms could be used
to establish secure channel between the signer and the server. Each of these sections is equipped with evidence
of security for the corresponding protocols. Section 4 concludes the paper.

2 Joint Signatures and Proof Of Security

2.1 Key Generation

Let 7 and j be two parties that want to jointly sign message m. Let v denote any verifier. We extend the RSA
public-key cryptosystem as follows: let the joint secret exponent of ¢ and j be d;;, the corresponding joint public
exponent e;;, the joint modulus N;; = p - ¢, p, ¢ are large properly chosen primes, and dij - e;; = 1 mod A(N),
where A(V) denotes the Carmichael function of N. Unlike in ordinary RSA, none of i or j knows the factorization
of N, nor any related function, such as ¢(V), A(N). Further, neither i nor j know d;;. All i knows besides the
public information is some d;, and similarly j knows a d;, such that d; - d; = d;; mod A(N). Some certification
authority is the only one who (for a short while) knows p and ¢, while creating the above keys. This factorization
is destroyed thereafter.

As we shall see later, it is possible to use this protocol with a relatively short secret exponent, d;. If used in this
fashion, we impose an additional size constraint on d;. Let n = log(N) be the security parameter. Certainly d;
must be super-polynomial in n. Any “small” superpolynomial function in n is good enough, for example, we can
use d; = O(F(n)), where F(n) = nlod(n)/loglog(n)

Signature Protocol:




To jointly sign a message m € Zy i computes ¢; = m% mod N, sends it to j, who verifies that indeed ¢ *¥ =
m mod N, and if so sends to v ¢; = cf 7 mod N. The joint signature is ¢;. The verifier, v checks to see whether
m = ¢;* mod N.

It follows from theorem 5.1 in [4] that if ¢ and j collude they can factor N. We summarize the protocol in the
following table (omitting verification processes).

Signature Protocol

: J
c=m% —

Send verified ¢;
to verifier, v.

2.2 Evidence of security
2.2.1 Passive adversary

The signature forgery problem for passive adversary is (for simplicity we use e and d to denote e;; and d;;,
respectively):
— Problem A:
Input: N,e, mo, and a history of polynomially many triples {m, m%, md},
Output: cg, s.t. ¢§ = mp mod N.

The RSA forgery problem is:
Problem B:

Input:N, E, My,

Output: C,s.t. CE = My mod V.

Theorem 1: There exists a randomized Turing reduction [2] from problem B to problem A.

Sketch of Proof: Map N— N, E — e, My — my, and pick d; with homogeneous distribution from its specified

domain (of short exponents). It follows that D = d, and MY = mg mod N. To create a consistent history
— {m,m% m4} proceed as follows: Pick with homogeneous distribution’ numbers ¢, which will play the role of
' m¢ mod N, and compute m = ¢®* mod N. Then compute m?% mod N. Clearly, the output of oracle A is the

answer for problem B. Assuming that the natural distributions of problems A and B are homogeneous, and by the

randomization on d; we conclude that the domination property holds [2]. Q.E.D.

2.2.2 Active adversary

s RSA has its security problems, which stem from its multiplicative property, namely, given the signatures oy, o2
of some user on two messages, mi,my one could forge his signature on m; - m3; mod N (it is 6y - 02 mod N).
In practice we overcome this problem by imposing some structure on the messages to be signed. For example, a
message may have to be bounded to the left by 0%,1 and by 1,0* to the right, where k is linear in the security

<~ 1Or any desired distribution of history (provided it is P-samplable [2]). We assume henceforth homogeneous distribution.




parameter. It is highly unlikely that multiplicative properties can still be efficiently exploited with this structure.
The same restrictions and assumptions must be used in our system.

The formalization of impersonation attack by some z is that z plays in the middle, and instead of transferring c;
(say), he transfers h(c;) for some efficiently computable function A(), such that the protocol is not aborted, i.e. all
verifications conclude positively, for some message riig & mo mod N. We make the assumption that for properly
structured messages this is impossible. Let M denote the domain of properly structured messages. Throughout
“efficient” means “computable in probabilistic polynomial time on the average.”

- Assumption-1: There is no efficient algorithm that can forge RSA signature on non negligible fraction of M.

Since each of ¢; and ¢; is an ordinary RSA signature for the legitimate recipient, assumption-1 implies that h()
must be the identity function, hence there is no difference between active and passive adversary, and the proof of
the previous section applies. :

2.2.3 Attacks by ¢ against j

In addition to the input of problem A if the attacker is 7, then he has d;. The reduction from problem B to the
new problem A’ still holds. This works regardless of the length of d;.

To analyze how hard it is for j to generate a joint signature we analyze the symmetrical problem. However, now
the reduction works only if d; is full size (since after picking d;, and given d, it is most likely that the corresponding
d; is full size). We conclude:

Theorem 2: (i) It is as hard for i to create a joint (i — j) signature by himself as to forge ordinary RSA signature,
and

(ii) It is as hard for j to create a joint (¢ — j) signature by himself as to forge ordinary RSA signature, provided
that d; is full size.

Corollary:

It follows from Theorem 2, that ¢ cannot forge j’s signature mg’ under assumption-1, since such a forgery implies
the ability to forge a joint signature. Similarly j cannot forge i’s signatures, mg‘ under assumption-1, if d; is full
size (and probably even if d; is shorter, but that was not proved).

Wiener’s Attack In [10] Michael Wiener showed how to find in polynomial time a secret RSA exponent, given
only the public information. His attack works if

1. The secret exponent is of length less than ~ |N|/4.
2. The public exponent is of length less than ~ 3|N|/2.

For an outsider, z, as well as for i (acting against j) the first requirement does not hold. For j (acting against 7)
the second requirement does not hold; the effective public exponent that j has, with respect to i’s secret key, d;,
is e - dj. As we mentioned before, we do not know if the added information that j has, namely the factorization
of e - d; into large factors e and d;, can help him.

TN




3 Secure i-j channel

To establish a secure channel between i and j each of these parties picks a number (z for ¢ and y for j) with
homogeneous distribution from (1, N), raises it to the power of his secret exponent, and sends to his counter-
part, who deciphers it by raising it to his secret exponent, and then to the joint public key. The session key
is sk = z - y mod N. Then the parties try the session key using two way challenge response with a strong
conventional cryptosystem. If the process concludes positively they have authenticated each other, and agreed on
a session key. The process is summarized (omitting details) as follows:

Secure Channel
i J
pick z pick y

z —

— y%
sk=z-ymod N

0

We show that breaking this protocol is as hard as breaking RSA for properly structured messages, where the
public key is short. Interestingly, in this reduction the short RSA public key is mapped into the short secret
key of i in this protocol. As before, we assume that k() = I the identity function, and concentrate on passive
attack. We use B’ to denote RSA cracking problem, which is like problem B, with the added assumption that E
is relatively small (but super-poly, say O(F(n))). We use C to denote the problem of cracking the above protocol.

Problem C:
Input: a = z%,b = y%, N, e and a polynomial history {a’,¥’, sk},
Output: sk=z-ymod N.

Theorem 3: There exists a randomized Turing reduction from B’ to C.

Sketch of Proof: Map N— N, E — d; (they are both short), My — a, and pick e and b with homogeneous
distribution from the appropriate domains. Compute y = 4%'* mod N. Create a consistent history {a’, ¥, sk’}
as follows: Pick z’ and compute @’ = z/% mod N. Pick b and compute ¥ = ¥%* mod N. Compute sk’ =
z' -y mod N. From oracle C’s output sk = z - y mod N extract ¢ = sk - y~! mod N. Clearly £ = C mod N.
The domination property holds [2]. Q.E.D.

Note: A verifier of a signature by user ¢ on message m could conduct a pass-word guessing attack on the (3, j)
channel, to recover the relatively short secret key d;, unless this channel is protected, e.g. using our secure channel
protocol. An alternative solution is proposed in [6].

4 Conclusions

Under assumption-1 both the signature and secure channel protocol are protected against outsider z, and ¢ and j
are protected against each other, for mg, z,y € M, assuming that user ¢ uses full size secret key. In the case that
user ¢ uses short secret key the above proofs extend for protection against outsiders, and protection of j against
i. We believe that in addition users (i) are protected against the server, j, but did not prove it. We leave it as an
open problem.
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